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Relevant Detector Elements:
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Time of Flight (TOF): 
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tracks: 0.5 GeV < Pt < 1.0 GeV

Data from small prototypepions

kaons protons

TOF:

•216 bars of Scintillator

•Radius: 138 cm

•Each read out both ends by PMT’s

•Expected ave resolution: 100 psec

Particle Identification (For Bs mixing: especially Kaons)
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Zooming in...
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Importance of L00:
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Run II at CDF:

•Central Outer Tracker: 
•Physical detector installed. Calibration soon. 

•SVX (main silicon detector) and ISL (Intermediate Silicon Layers):
•Ladder assembly complete for SVXII, at 80% for ISL 
•2 of 3 barrels are complete for SVXII. Ladder mounting on the frames is underway for ISL

•L00 (inner layer of silicon):
•On target for Oct 3rd completion.

•TOF:
•Mechanical Installation complete. 

• Status of Tracking and TOF:

• CM Energy from 1.8 Tev to 2.0 Tev

• Significant Luminosity upgrade (  expected in first 2 years.)12 −fb

• Significant detector upgrades (as described).

Scenario

A 396 0.7 2

B 132 2.0 2

C 396 1.7 5

( )nsTbunch
)10( 1232 −−× scm

L
ppN
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A Box Diagram for Neutral B Mixing
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• Important goal: Measure CPV in the interference between 
decays, with and without mixing. 

(Clean theoretical interpretation for some modes)

• But the time dependent asymmetry modulated by mixing:

Given 2 time evolving neutral B states which start out as    and
respectively, compare their rates to a given CP eigenstate:

The importance of sx

.( )( ) ( )( )
( )( ) ( )( ) ( ) ( )tm

ftBftB
ftBftB

Bf

CPphysCPphys

CPphysCPphys

CP
∆=

→Γ+→Γ

→Γ−→Γ sinIm
00

00

λ

B B

• Without being able to resolve Mixing, a measurement of this 
asymmetry in the Bs sector will be nearly impossible.

• also…..
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in the Standard model and beyond:

• However, in the ratio       some theoretically uncertain 
quantities cancel. So in conjunction with a measurement of      
could provide cleaner evidence of new physics. 

s∆Γ
s

s

x
∆Γ

• A measurement of       would help to constrain the 
elements of the CKM matrix.

sx

• The Standard Model does not easily allow

So could see new physics here (eg     )

30>sx ∼

30>>sx

sx
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Reminder of what we measure:

•What is measured: ( )( ) ( ) ( )
( ) ( )tNtN

tNtNtA
mixedunmixed

mixedunmixed
mixed +

−=

• Note: Ignoring CPV, but expected to be negligibly small.

• So must tag the initial flavour of the B:
• Same side tagging: Fragmentation Kaon.

• Opposite side tagging: Semileptonic Decay, Jet Charge, Kaon Charge Asymmetry

Where                is number of correct (incorrect) tags.( )WR NN  

• Related to mistag rate: wD 21−=
(eg if out of 100 events we tag 60 right and 40 wrong,              ) 4.0 ,2.0 == wD

• Tagging efficiency     is defined as the fraction of signal for which we 
could calculate a tagging quantity.

ε

WR

WR

NN
NND

+
−=• Don’t get it right all the time. Parameterise this by Dilution:
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The significance of a measurement:
•In order to find      fit the measured asymmetry to: 

(by minimizing a log-likelihood quantity). ( ) �
�

�
�
�

�=
τ

txAta scos 

•The significance, in equivalent standard deviations can be expressed:

[ ]( )LSig log2 ∆×=

where                  is the depth of the minimum compared to the next-to-deepest minimum.[ ]Llog∆

•This can be expressed analytically:

( ) [ ]
S

SxDNxSig cts
s +�

�
�

�
�
�
�

� −=
12

exp
2

22 σε
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CDF baseline Likelihood function:
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Semileptonic modes:

* 

 

ss

ss

DlB

DlB

ν

ν

→

→• Look in:

• Proper time resolution worse than               +−→ πss DB

• Extrapolating from Run I data, expect to be able to 
measure                 from semileptonics alone.30≈sx

• Expect                  semileptonic sample size000,40≈N
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Fully Hadronic Modes:
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*   where

  where

  where

• Seek to reconstruct other modes of the Ds

• Look for fully reconstructed Bs decays: minimise

• Requires triggering on hadrons: a challenge at a hadron machine.
Use an extremely fast hardware impact parameter trigger 

(has to able to cope with an input rate             )

ctσ

kHz 20≈



11-Sep-00 M.Martin (CDF/Oxford)

16

Assumptions behind prediction:

• Tagging power:
�
�
�

=
TOF   with 11.3%

TOFut      witho%7.52Dε

• Proper time resolution:
�
�
�

=
00Layer    with fs 45

00Layer ut      withofs 60
ctσ

• Number of fully reconstructed Bs events ≈ 20000

• Predictions take into account:
• Expected Luminosity
• Expected occupancy

Mode A B C

10600 8400 7200

12800 10400 8100

9400 7400 5800

+−→ πss DB

+−
→ π*

ss DB

+−+−→ πππss DB

Senario

A 396 0.7 2

B 132 2.0 2

C 396 1.7 5

( )nsTbunch
)10( 1232 −−× scm

L
ppN

• in the first 2 years of running.12 −fb

• Only consider fully reconstructable modes
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The Prediction.

Baseline TOF+L00 Baseline TOF+L00
5000 30 49 21 39

10000 37 56 30 49
20000 42 63 37 56
30000 45 67 40 60

N(Bs)
S/B=2:1 S/B=1:2

Baseline TOF+L00 Baseline TOF+L00
5000 2.20 0.24 - 0.53

10000 0.52 0.11 - 0.21
20000 0.21 0.05 0.99 0.10
30000 0.13 0.03 0.50 0.06

N(Bs)
xs=30 xs=40

Maximum values of xs for which a 5 σ observation is possible:

Minimum values of signal-to-background ratio for which a 5 σ observation is possible:

( ) [ ]
S

SxDNxSig cts
s +�

�
�

�
�
�
�

� −=
12

exp
2

22 σε
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CDF baseline 5 σ Mixing Reach:
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Beyond the baseline reach:
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More intuitive picture:
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Conclusions

• SM prediction:

• With TOF and Layer 00:

• Even for pessimistic sample size, SM prediction well 
within reach.

• Even for pessimistic signal to background ratio, SM 
prediction well within reach.

30<sx ∼


